Abstract

We have used intracellular recording in vivo to study fibrillation (spontaneous repetitive membrane activity) in extensor digitorum longus (fast twitch) and soleus (slow twitch) muscles of the anaesthetized rat and guinea-pig denervated for periods of about 10 to 60 days. The proportion of fibres fibrillating in the guinea-pig soleus was greater than 50% in most animals up to the longest period of denervation (65 days). Fibrillation was rarely found in rat soleus after three weeks of denervation. Its incidence in the extensor digitorum longus muscles of both species was intermediate. The mean frequency of fibrillation was higher in guinea-pig extensor digitorum longus (16 Hz) and soleus (8 Hz) than in the rat extensor digitorum longus (3 Hz) and soleus (2 Hz). The resting membrane potentials of the denervated muscles were less than normal and correlated inversely with the frequency of fibrillation but not with the incidence of fibrillation: in rat soleus, many fewer fibers were fibrillating at a given membrane potential than in the other three muscles. The incidence of fibrillation was compared with previously reported tensions of the four denervated muscles and was found to have the same rank order. We suggest that fibrillation may reduce atrophy (and hence tension loss) of denervated muscle, which may have implications for artificial stimulation. Fibrillation frequency was directly related to changes in twitch speed of the four muscles after denervation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.