Abstract

Abstract The fact that industrial pulps have a lower strength than their corresponding laboratory pulps is an unsolved problem affecting in various ways the potential fibre utilisation in different mills. The loss of pulp strength has to a great extent been attributed to changes at the fibre level. In order to clarify in what way changes in fibre properties contribute to the strength losses, cooking experiments were conducted using a laboratory batch digester in which mechanical forces may be introduced. Fibre properties, i.e. fibre structure and fibre strength, of laboratory-made pulps were compared with those of an industrial pulp. It was concluded that two essentially different mechanisms may be identified; one related to the transverse fibre shape, the other to fibre damage. The latter is manifested as lower rewetted zero-span strength which reduces tear resistance and tensile strength of the pulp. The former is a collapse of the fibre, reducing the lumen area and resulting in a pulp with lower water-retaining capacity, given sheets of lower density and a pulp that has to be beaten to a higher degree to reach the desired bonding and the desired tensile strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.