Abstract

BackgroundThe 27k Illumina Infinium Methylation Beadchip is a popular high-throughput technology that allows the methylation state of over 27,000 CpGs to be assayed. While feature selection and classification methods have been comprehensively explored in the context of gene expression data, relatively little is known as to how best to perform feature selection or classification in the context of Illumina Infinium methylation data. Given the rising importance of epigenomics in cancer and other complex genetic diseases, and in view of the upcoming epigenome wide association studies, it is critical to identify the statistical methods that offer improved inference in this novel context.ResultsUsing a total of 7 large Illumina Infinium 27k Methylation data sets, encompassing over 1,000 samples from a wide range of tissues, we here provide an evaluation of popular feature selection, dimensional reduction and classification methods on DNA methylation data. Specifically, we evaluate the effects of variance filtering, supervised principal components (SPCA) and the choice of DNA methylation quantification measure on downstream statistical inference. We show that for relatively large sample sizes feature selection using test statistics is similar for M and β-values, but that in the limit of small sample sizes, M-values allow more reliable identification of true positives. We also show that the effect of variance filtering on feature selection is study-specific and dependent on the phenotype of interest and tissue type profiled. Specifically, we find that variance filtering improves the detection of true positives in studies with large effect sizes, but that it may lead to worse performance in studies with smaller yet significant effect sizes. In contrast, supervised principal components improves the statistical power, especially in studies with small effect sizes. We also demonstrate that classification using the Elastic Net and Support Vector Machine (SVM) clearly outperforms competing methods like LASSO and SPCA. Finally, in unsupervised modelling of cancer diagnosis, we find that non-negative matrix factorisation (NMF) clearly outperforms principal components analysis.ConclusionsOur results highlight the importance of tailoring the feature selection and classification methodology to the sample size and biological context of the DNA methylation study. The Elastic Net emerges as a powerful classification algorithm for large-scale DNA methylation studies, while NMF does well in the unsupervised context. The insights presented here will be useful to any study embarking on large-scale DNA methylation profiling using Illumina Infinium beadarrays.

Highlights

  • The 27k Illumina Infinium Methylation Beadchip is a popular high-throughput technology that allows the methylation state of over 27,000 CpGs to be assayed

  • We focused on four different powerful classification algorithms, which have been popular in the gene expression field: (i) Supervised Principal components analysis (PCA) (SPCA) [21], (ii) the LASSO algorithm [40], (iii) the Elastic Net (ELNET) [32] and (iv) Support Vector Machines (SVM) [33,41]

  • In this study we ask if the effect size of CpGs associated with a phenotype of interest ("signal to noise ratio"-SNR) and their number ("signal strength”) have an impact on the performance of the different feature selection methods and if this depends on the methylation measure used

Read more

Summary

Introduction

The 27k Illumina Infinium Methylation Beadchip is a popular high-throughput technology that allows the methylation state of over 27,000 CpGs to be assayed. Most statistical reports on Infinium 27k DNAm data have focused on unsupervised clustering and normalisation methods [16,17,18,19], but as yet no study has performed a comprehensive comparison of feature selection and classification methods in this type of data This is surprising given that feature selection and classification methods have been extensively explored in the context of gene expression data, see e.g. Given that the high density Illumina Infinium 450k methylation array is starting to be used [10,35] and that this array offers the coverage and scalability for epigenome wide association studies (EWAS) [36], it has become a critical and urgent question to determine how best to perform feature selection on these beadarrays

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.