Abstract

Antigenic diversity within a collection of 18 isolates of Dermatophilus congolensis from different Continents was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blotting with sera from cattle with clinical dermatophilosis using whole cell extracts obtained by three methods and one extract of extracellular products of D. congolensis. One of the methods involving the release of a lysostaphin-solubilized protein (LSP) of whole cells of D. congolensis revealed a number of discrete and easily-identifiable bands in SDS-PAGE which were found suitable for characterizing protein patterns and was, therefore, subsequently used for a comparative analysis of the proteins of all the D. congolensis isolates. Six electropherotypes (ET) of D. congolensis were identified among the 18 isolates using the protein profiles based on the presence of four protein bands at Molecular weights (MW) 62, 28, 17.4 and 16.4 kDa. The ETs were found among isolates from different animal species and from different sources with ET1 consisting of three bovine and two equine isolates; ET2, two bovine and three ovine isolates; ET3, two bovine isolates; ET4, two bovine isolates; ET5, one bovine and one ovine isolates and ET6, two bovine isolates. Immunoblotting of the extracts of D. congolensis isolates with sera from cattle with clinical dermatophilosis infection demonstrated protein bands of MW ranging from 9 kDa to 188 kDa. Sera from chronic dermatophilosis infection demonstrated a 28 kDa protein which was immunodominant in the LSP extracts of all the 18 isolates of D. congolensis tested while sera from mild infections demonstrated mainly the 62 kDa protein in the same extracts. However, many protein bands were demonstrated in surface membrane (TSMP) and extracellular protein extracts with sera from only mildly infected animals. The protein patterns observed in all isolates of D. congolensis revealed global antigenic similarities and distinct differences among isolates which could not be associated with either geographic, climatic or host factors. Also sera from infected animals from endemic regions of dermatophilosis could not differentiate isolates of D. congolensis. This suggests the possibility that such sera must have come from animals that had been infected by a multitude of D. congolensis strains present in the herd environment and strains an animal could have come across during the `ritual' annual cross-country migration of the cattle herds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.