Abstract

Like all mechanical devices, motors are subject to failures, which can sometimes lead to the shutting down of an entire industrial process. This paper looks at failure predictions in three-phase line-operated induction machines through spectral analysis or electric and electromagnetic signals. Fault characteristics frequencies generated in the estimated and the measured signal spectrum, as a result of mechanical abnormalities such as broken rotor bars, are analyzed. Spectral analyses of simple stator current, of the current's Park vector modulus, and or total and partial instantaneous electric powers are considered as external diagnosis. Internal methods of diagnosis are usually based on a mathematical model of the motor. This requires knowledge of the motor's electrical parameters, which are affected by a number of physical phenomena such as temperature variations, skin effects, core losses, and saturation. As internal diagnosis, we examine different approaches to the spectral analysis of electromagnetic torque computed by stator and rotor flux estimation. To this end, the open loop method, the Luenberger observer and the Kalman filter are employed. Finally, experimental results enable us to draw up a table of comparison of internal and external methods in the detection of rotor imperfections, using two criteria under different load levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call