Abstract
Evolutionary programming and genetic algorithms are compared on two constrained optimization problems. The constrained problems are redesigned as related unconstrained problems by the application of penalty functions. The experiments indicate that evolutionary programming outperforms the genetic algorithm. The results are statistically significant under nonparametric hypothesis testing. The results also indicate potential difficulties in the design of suitable penalty functions for constrained optimization problems. A discussion is offered regarding the suitability of different methods of evolutionary computation for such problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.