Abstract

Several counterparts of Bayesian networks based on different paradigms have been proposed in evidence theory. Nevertheless, none of them is completely satisfactory. In this paper we will present a new one, based on a recently introduced concept of conditional independence. We define a conditioning rule for variables, and the relationship between conditional independence and irrelevance is studied with the aim of constructing a Bayesian-network-like model. Then, through a simple example, we will show a problem appearing in this model caused by the use of a conditioning rule. We will also show that this problem can be avoided if undirected or compositional models are used instead.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.