Abstract

We consider two problems concerning locating change points in a linear regression model. One involves jump discontinuities (change-point) in a regression model and the other involves regression lines connected at unknown points. We compare four methods for estimating single or multiple change points in a regression model, when both the error variance and regression coefficients change simultaneously at the unknown point(s): Bayesian, Julious, grid search, and the segmented methods. The proposed methods are evaluated via a simulation study and compared via some standard measures of estimation bias and precision. Finally, the methods are illustrated and compared using three real data sets. The simulation and empirical results overall favor both the segmented and Bayesian methods of estimation, which simultaneously estimate the change point and the other model parameters, though only the Bayesian method is able to handle both continuous and dis-continuous change point problems successfully. If it is known that regression lines are continuous then the segmented method ranked first among methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.