Abstract

The estimation of dynamic factor models for large sets of variables has attracted considerable attention recently, due to the increased availability of large datasets. In this paper we propose a new methodology for estimating factors from large datasets based on state space models, discuss its theoretical properties and compare its performance with that of two alternative estimation approaches based, respectively, on static and dynamic principal components. The new method appears to perform best in recovering the factors in a set of simulation experiments, with static principal components a close second best. Dynamic principal components appear to yield the best fit, but sometimes there are leakages across the common and idiosyncratic components of the series. A similar pattern emerges in an empirical application with a large dataset of US macroeconomic time series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.