Abstract

We have compiled a sample of globular clusters with high-quality stellar abundances from the literature to compare to the chemistries of stars in the Galaxy and in dwarf spheroidal galaxies. Of the 45 globular clusters examined, 29 also have kinematic information. Most of the globular clusters belong to the Galactic halo; however, a significant number have disk kinematics or belong to the bulge. Focusing on the [α/Fe] and light r-process element ratios, we find that most globular cluster stars mimic field stars of similar metallicities, and neither clearly resembles the currently available stellar abundances in dwarf galaxies (including globular clusters in the Large Magellanic Cloud). The exceptions to these general elemental ratio comparisons are already known in the literature, e.g., ω Centauri, Palomar 12, and Terzan 7 associated with the Sagittarius remnant and Ruprecht 106, which has a high radial velocity and low [α/Fe] ratio. A few other globular clusters show more marginal peculiarities. The most notable one is the halo cluster M68, which has a high galactocentric rotational velocity, a slightly younger age, and a unique [Si/Ti] ratio. The [Si/Ti] ratios decrease with increasing [Fe/H] at intermediate metallicities, which is consistent with very massive stars playing a larger role in the early chemical evolution of the Galaxy. The chemical similarities between globular clusters and field stars with [Fe/H] ≤ -1.0 suggests a shared chemical history in a well-mixed early Galaxy. The differences in the published chemistries of stars in the dwarf spheroidal galaxies suggest that neither the globular clusters, halo stars, nor thick disk stars had their origins in small isolated systems like the present-day Milky Way dwarf satellites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call