Abstract

Electron density distributions of three urea derivatives N-methylurea, N-phenylurea and N,N′-diphenylurea were determined by single-crystal X-ray diffraction. High-resolution data were measured with synchrotron radiation. Data were subjected to a multipole refinement using the Hansen–Coppens multipole model, to Hirshfeld-atom refinement with and without a surrounding cluster of point charges/dipoles and to X-ray wavefunction refinement. Electron density distributions were evaluated in terms of deformation and residual electron density plots as well as bond critical points, atomic volumes and charges as defined in Bader's Theory of Atoms In Molecules. Given a sufficiently extended basis-set Hirshfeld-atom refinement yields results superior to multipole model refinements; best figures of merit were achieved by X-ray wavefunction refinement. Results indicate how conventional crystallographic studies can be systematically improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.