Abstract

In this study, we examined how DNA-binding drugs prevented formation of transcription factor-DNA complexes and influenced gene transcription from the hamster dihydrofolate reductase promoter, which is regulated by E2F1 and Sp1. Gel mobility shift assay data showed that GC-binding drugs (e.g., mitoxantrone) inhibited the DNA binding of both E2F1 and Sp1. In contrast, AT-binding drugs (e.g., distamycin) interfered only with E2F1-DNA complex formation. In an in vitro transcription assay using HeLa nuclear extracts, inhibition of transcription was observed when mitoxantrone or distamycin was added either before or after assembly of the transcription complex on the DNA, although for the latter, higher drug concentrations were needed. Mitoxantrone, which was a stronger inhibitor of transcription factor-DNA complex, was more effective than distamycin at preventing transcript formation. Time course transcription in a cell-free assay with addition of various drug concentrations indicated that high drug concentrations of either mitoxantrone or distamycin completely blocked transcription, while low drug concentrations could delay the synthesis of transcripts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.