Abstract
The column subset selection problem is a well-known complex optimization problem that has a number of appealing real-world applications including network and data sampling, dimension reduction, and feature selection. There are a number of traditional deterministic and randomized heuristic algorithms for this problem. Recently, it has been tackled by a variety of bio-inspired and evolutionary methods. In this work, differential evolution, a popular and successful real-parameter optimization algorithm, adapted for fixed-length subset selection, is used to find solutions to the column subset selection problem. Its results are compared to a recent genetic algorithm designed for the same purpose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.