Abstract

Grey Wolf Optimiser (GWO) is the recently proposed meta-heuristic algorithm inspired by grey wolves. The original version of GWO has been proposed to solve problems in continuous search spaces. However, there are many optimisation problems in discrete binary search spaces such as feature selection and dimensionality reduction. We applied eight transfer functions in our BGWO and compared their performance. The test functions whose minimum points are gotten at 0 are selected as bench functions but also those functions their minimum value are gotten at 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.