Abstract
The paper investigates the effect of model uncertainty on multivariate volatility prediction. Our aim is twofold. First, by means of a Monte Carlo simulation, we assess the accuracy of different techniques in estimating the combination weights assigned to each candidate model. Second, in order to investigate the economic profitability of forecast combination, we present the results of an application to the optimization of a portfolio of the US stock returns. Our main finding is that, for both real and simulated data, the results are highly sensitive not only to the choice of the model but also to the specific combination procedure being used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.