Abstract

In view of the complexity of the conductivity and the geometry of the human head, a numerical method would appear to be necessary for the adequate calculation of the electric potential and the magnetic induction generated by electric sources within the brain. Four numerical methods that could be used for solving this problem are the finite-difference method, the finite-element method, the boundary-element method, and the finite-volume method. These methods could be used to calculate the electric potential and the magnetic induction directly. Alternatively, they could be applied to compute the electric potential or the electric field and the magnetic induction could then be determined by numerical integration of the Biot-Savart law. The four numerical methods are briefly reviewed. Thereafter the relative merits of the methods and the various options for using them to solve the EEG and MEG problem are evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.