Abstract
Mixed-type dislocations are prevalent in metals and play an important role in their plastic deformation. Key characteristics of mixed-type dislocations cannot simply be extrapolated from those of dislocations with pure edge or pure screw characters. However, mixed-type dislocations traditionally received disproportionately less attention in the modeling and simulation community. In this work, we explore core structures of mixed-type dislocations in Al using three continuum approaches, namely, the phase-field dislocation dynamics (PFDD) method, the atomistic phase-field microelasticity (APFM) method, and the concurrent atomistic-continuum (CAC) method. Results are benchmarked against molecular statics. We advance the PFDD and APFM methods in several aspects such that they can better describe the dislocation core structure. In particular, in these two approaches, the gradient energy coefficients for mixed-type dislocations are determined based on those for pure-type ones using a trigonometric interpolation scheme, which is shown to provide better prediction than a linear interpolation scheme. The dependence of the in-slip-plane spatial numerical resolution in PFDD and CAC is also quantified.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modelling and Simulation in Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.