Abstract

Fifteen procedures based on hybrid density functional theory were used to calculate magnetic properties for the carbon-bound hydrogen nuclei of 80 small to modest-sized organic molecules. The predicted isotropic shieldings derived from the various methods were compared with each other and also with solution experimental data. The computational methods investigated included the IGAIM and GIAO procedures, the 6-311++G(d,p), 6-311++G(2df,p), and 6-311++G(3df,2p) basis sets, the B3LYP, B3P86, and B3PW91 hybrid density functionals, and molecular geometries optimized using both MP2 and B3LYP methods. Although agreement with experiment consistently improved as the basis set was enlarged, the improvement upon going from 6-311++G(2df,p) to 6-311++G(3df,2p) was extremely small, and even the difference between 6-311++G(d,p) and 6-311++G(2df,p) was of a modest size. The GIAO and IGAIM procedures yielded very similar results in conjunction with the largest basis set, but GIAO suffered considerably less degradation tha...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call