Abstract

Extracting information from the peripheral nervous system with implantable devices remains a significant challenge that limits the advancement of closed-loop neural prostheses. Linear electrode arrays can record neural signals with both temporal and spatial selectivity, and velocity selective recording using the delay-and-add algorithm can enable classification based on fibre type. The maximum likelihood estimation method also measures velocity and is frequently used in electromyography but has never been applied to electroneurography. Therefore, this study compares the two algorithms using in-vivo recordings of electrically evoked compound action potentials from the ulnar nerve of a pig. The performance of these algorithms was assessed using the velocity quality factor (Q-factor), computational time and the influence of the number of channels. The results show that the performance of both algorithms is significantly influenced by the number of channels in the recording array, with accuracies ranging from 77% with only two channels to 98% for 11 channels. Both algorithms were comparable in accuracy and Q-factor for all channels, with the delay-and-add having a slight advantage in the Q-factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.