Abstract

We present the sensor-fusion results obtained from measurements within the European research project ground explosive ordinance detection (GEODE) system that strives for the realisation of a vehicle-mounted, multi-sensor, anti-personnel landmine-detection system for humanitarian de-mining. The system has three sensor types: a metal detector (MD), an infrared camera (IR), and a ground penetrating radar (GPR). The output of the sensors is processed to produce confidence levels on a grid covering the test-bed. A confidence level expresses a confidence or belief in a landmine detection on a certain position. The grid with confidence levels is the input for the decision-level sensor-fusion and provides a co-registration of the sensors. The applied fusion methods are naive Bayes' approaches, Dempster–Shafer theory, fuzzy probabilities, a rule-based method, and voting techniques. To compare fusion methods and to analyse the capacity of a method to separate landmines from the background on the basis of the output of different sensors, we provide an analysis of the different methods by viewing them as discriminant functions in the sensor confidence space. The results of experiments on real sensor data are evaluated with the leave-one-out method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.