Abstract

Fan-shaped film-cooling holes have been shown to provide superior cooling performance to cylindrical holes along flat plates and turbine airfoils over a large range of different conditions. Benefits of fan-shaped holes include less required cooling air for the same performance, increased part lifetime, and fewer required holes. The major drawback, however, is increased manufacturing cost and manufacturing difficulty, particularly for the vane platform region. To this point, there have only been extremely limited comparisons between cylindrical and shaped holes on a turbine endwall at either low or high freestream turbulence conditions. This study presents film-cooling effectiveness measurements on an endwall surface in a large-scale, low-speed, two-passage, linear vane cascade. Results showed that film-cooling effectiveness decreased with increasing blowing rate for the cylindrical holes, indicating jet liftoff. However, the fan-shaped passage showed increased film-cooling effectiveness with increasing blowing ratio. Overall, fan-shaped holes increased film-cooling effectiveness by an average of 75% over cylindrical holes for constant cooling flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.