Abstract

The plasminogen system is important in the proteolytic cascade that facilitates angiogenesis, a process that is essential for tumor growth and metastasis. The serine protease plasmin has a central role in the plasminogen system. This protease acts by degrading several components of the basement membrane and by activating other proteases. Therefore, inhibition of plasmin may be an effective method for blocking angiogenesis and, as a result, inhibiting the growth of primary tumors and secondary metastases. Three pairs of plasmin inhibitors were synthesized to compare the relative potency of inhibitors that are based upon a cyclohexanone or a tetrahydro-4H-thiopyran-4-one 1,1-dioxide nucleus. Compounds 1, 3, and 5 were cyclohexanone-based inhibitors, whereas compounds 2, 4, and 6 were tetrahydro-4H-thiopyran-4-one 1,1-dioxide-based inhibitors. Compounds 5 and 6 are reasonable inhibitors with IC50 values of 25 and 5.5 microM, respectively. Comparisons of the IC50 values of the three pairs show that the electron-withdrawing sulfone functional group is a beneficial element for the design of plasmin inhibitors. The presence of the sulfone increases inhibitor potency by a factor of 3-5 when compared to inhibitors that are based upon a simple cyclohexanone core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call