Abstract

Cost partitioning is a general and principled approach for constructing additive admissible heuristics for state-space search. Cost partitioning approaches for optimal classical planning include optimal cost partitioning, uniform cost partitioning, zero-one cost partitioning, saturated cost partitioning, post-hoc optimization and the canonical heuristic for pattern databases. We compare these algorithms theoretically, showing that saturated cost partitioning dominates greedy zero-one cost partitioning. As a side effect of our analysis, we obtain a new cost partitioning algorithm dominating uniform cost partitioning. We also evaluate these algorithms experimentally on pattern databases, Cartesian abstractions and landmark heuristics, showing that saturated cost partitioning is usually the method of choice on the IPC benchmark suite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.