Abstract

The secondary electron (SE) imaging of several samples across a range of scanning electron microscopes (SEM) and SE detectors under matched operating conditions has generated a highly variable image data set. Using microanalytical conditions (10-15 kV), images from in-column SE detectors reveal the presence of surface films and contaminants that are invisible to conventional Everhart-Thornley SE detectors under the same conditions. Data from studying the effects of working distance, the image resolution derived through contrast transfer function analysis and electrostatic mirror imaging of the SE detectors in operation combine with other studies to suggest that the classically defined SE1 component can be separated from other SE components. SE images obtained by tailored mechanical design and energy-filtering will provide SE images with probe-sized resolution and dominated by surface detail currently only seen in low-voltage SEM, potentially even from thermionic-sourced columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.