Abstract
AbstractThis paper focuses on the accurate, combined detection of glaucoma, diabetic retinopathy, and cataracts, all using a single computer vision pipeline. Attempts have been made in past literature; however, they mainly focus on only one of the aforementioned eye diseases. These diseases must be identified in the early stages to prevent damage progression. Three pipelines were constructed, of which 12 deep learning models and 8 Support Vector Machines (SVM) classifiers were trained. Pipeline 1 extracted Histogram of Oriented Gradients (HOG) features, and pipeline 2 extracted Grey-Level Co-occurrence Matrix (GLCM) textural features from the pre-processed images. These features were classified with either a linear or Radial Basis Function (RBF) kernel SVM. Pipeline 3 utilised various deep learning architectures for feature extraction and classification. Two models were trained for each deep learning architecture and SVM classifier, using standard RGB images (labelled as Normal). The other uses retina images with only the green channel present (labelled as Green). The Inception V3 Normal model achieved the best performance with accuracy and an F1-Score of 99.39%. The SqueezeNet Green model was the worst-performing deep learning model with accuracy and an F1-Score of 81.36% and 81.29%, respectively. Although it performed the worst, the model size is 5.03 MB compared to the 225 MB model size of the top-performing Inception V3 model. A GLCM feature selection study was performed for both the linear and RBF SVM kernels. The RBF SVM that extracted HOG features on the green-channel images performed the best out of the SVMs with accuracy and F1-Score of 76.67% and 76.48%, respectively. The green-channel extraction was more effective on the SVM classifiers than the deep learning models. The Inception V3 Normal model can be integrated with a computer-aided system to facilitate examiners in detecting diabetic retinopathy, cataracts and glaucoma.KeywordsGlaucomaDiabetic retinopathyCataractComputer visionConvolutional neural networkDeep learningGLCMHOGCAD
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.