Abstract

A hydrid zone between the Moreton and Torresian taxa of the grasshopper Caledia captiva in S.E. Queensland has been characterised in terms of allozyme and chromosome variation within the same individuals.--On chromosomal criteria (pericentric rearrangements), the zone is asymmetrical with evidence of high levels of introgression of Torresian chromosomes into the Moreton taxon. This is apparent from the analysis of two independent transects across the hydrid zone. Major changes in chromosomal frequency occur over distances of less than 0.5 km. and the level of introgression differs between the two transects, with much higher levels in the northern Moreton populations, characterised by an acrocentric X-chromosome, when compared with the southern metacentric-X Moreton populations. Chromosome analysis of samples taken from the same transect over two years has revealed no major changes in the structure of the zone. Moreover, a Moreton population located only 0.5 km. from the null point was found to be stable over 6 generations with evidence for a new balanced genome having originated following the differential incorportation of Torresian chromosomes.--Contrary to the chromosomal situation, the same hybrid zone was found to be symmetrical with respect to allozyme variation with evidence of movement of diagnostic alleles in both directions across the zone. The alleles are independent and not tightly linked to any of the pericentric rearrangements. Thus these 5 alleles are acting as markers of the background genome and reveal the relatively free movement of genes which are located outside the pericentric rearrangements.--It is proposed that the hybrid zone in Caledia captiva is unstable and is moving slowly in a westerly direction into the Torresian territory. This is due to the ability of the Moreton taxon to incorporate more readily into its genome those Torresian chromosomes or chromosome segments which increase the fitness of the Moreton taxon. On chromosomal criteria, the Torresian taxon does not share the same capacity.--It is suggested that, so long as the two taxa retain their ability to hybridise with subsequent asymmetrical introgression, the zone will continue to move westwards and eventually lead to the selective incorporation of the Torresian genome into the Moreton taxon. This will result in a polymorphic situation with clinal variation in chromosomal frequencies. The structure of the zone is dependent upon a fine balance between genomic reorganisation in recombinant genotypes and the relative dispersal capacities of the two hydridising taxa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.