Abstract

Two prominent genetic programming approaches are the graph-based Cartesian Genetic Programming (CGP) and Linear Genetic Programming (LGP). Recently, a formal algorithm for constructing a directed acyclic graph (DAG) from a classical LGP instruction sequence has been established. Given graph-based LGP and traditional CGP, this paper investigates the similarities and differences between the two implementations, and establishes that the significant difference between them is each algorithm's means of restricting interconnectivity of nodes. The work then goes on to compare the performance of two representations each (with varied connectivity) of LGP and CGP to a directed cyclic graph (DCG) GP with no connectivity restrictions on a medical classification and regression benchmark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.