Abstract

BackgroundCurrently it is uncertain how to define osteoporosis and who to treat after a hip fracture. There is little to support the universal treatment of all such patients but how to select those most in need of treatment is not clear. In this study we have compared cortical and trabecular bone status between patients with spinal fractures and those with hip fracture with or without spinal fracture with the aim to begin to identify, by a simple clinical method (spine x-ray), a group of hip fracture patients likely to be more responsive to treatment with current antiresorptive agents.MethodsComparison of convenience samples of three groups of 50 patients, one with spinal fractures, one with a hip fracture, and one with both. Measurements consist of bone mineral density at the lumbar spine, at the four standard hip sites, number, distribution and severity of spinal fractures by the method of Genant, cortical bone thickness at the infero-medial femoral neck site, femoral neck and axis length and femoral neck width.ResultsPatients with spinal fractures alone have the most deficient bones at both trabecular and cortical sites: those with hip fracture and no spinal fractures the best at trabecular bone and most cortical bone sites: and those with both hip and spinal fractures intermediate in most measurements. Hip axis length and neck width did not differ between groups.ConclusionThe presence of the spinal fracture indicates poor trabecular bone status in hip fracture patients. Hip fracture patients without spinal fractures have a bone mass similar to the reference range for their age and gender. Poor trabecular bone in hip fracture patients may point to a category of patient more likely to benefit from therapy and may be indicated by the presence of spinal fractures.

Highlights

  • It is uncertain how to define osteoporosis and who to treat after a hip fracture

  • Twenty-three, 16 and 23 spinal fracture only patients, hip and spinal fracture patients and hip fracture only patients respectively had degenerative changes noted on the x-ray report and 9, 8, and 7 of these respectively were reported as showing sclerosis, but the spinal BMD was not higher in these patients and their exclusion did not affect the results

  • Our analysis has attempted to sort out the relative contributions of trabecular and cortical bone deficiency to the different fractures and we were interested to see if the presence of vertebral fractures in the ihip fracture population might identify a group with deficient trabecular bone and so be a group who could be responsive to treatment, as opposed to being a group in whom the presence of vertebral fractures was another reflection of their falling and more traumatic in nature

Read more

Summary

Introduction

It is uncertain how to define osteoporosis and who to treat after a hip fracture. Initially the focus was on the prevention of compression fractures of the spine, the importance of preventing non-spinal fractures has emerged and is which better reflect cortical bone mass, femoral neck density [2,3]. By and large, it seems that patients at the lower end of the normal distribution of bone densities in the general population, are, should they fall, at greater risk of fracture than those at the upper end of the distribution. It is likely that many of the structural differences between hip fracture patients and others will be unresponsive to treatment with current osteoporosis medications

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.