Abstract

A comparison of the as-fatigued and re-consolidated properties have been made between notched quasi-isotropic [0/45/90/ 2 45]2S and cross-ply [0/90]4S AS4/PEEK laminates. For the former, the ^458 plies tend to constrain longitudinal damage development so that damage growth primarily occurred in the transverse direction, causing more widespread damage. This led to prominent mechanical properties degradation, shorter fatigue lives and lower residual strengths. For cross-ply laminates, quick and extensive longitudinal crack tangential to the hole and the corresponding 908 fiber shear off brought about effective stress concentration alleviation. This discouraged further damage development. Hence, their fatigue lives exceeded one million cycles even at high cyclic stress levels and their residual strengths were significantly higher than their virgin strength. On the other hand, the re-consolidation process removed most of the defects that alleviated the stress concentration and thus decreased the strengths. Detailed study of the residual strength changes and damage development history revealed that the residual as-fatigued and re-consolidated strengths were governed by the competition between local structural decay and its resulting stress concentration alleviation. q 2002 Elsevier Science Ltd. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.