Abstract
River water is a crucial natural resource utilized for various purposes, including agriculture and drinking. Human activities such as mining, industrial discharge, and improper waste management contribute to river water pollution, affecting its quality and posing risks to human health. Monitoring and predicting river water quality are essential for effective management and pollution control. The research focuses on Dissolved Oxygen (DO), and comparing of Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM) to developed prediction models. Evaluation of the models’ performance shows that the ANN model outperforms LSTM in predicting Dissolved Oxygen (DO) concentrations, achieving lower Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Although LSTM exhibits lower Mean Squared Error (MSE), the ANN model demonstrates better accuracy in minimizing the average distance between predicted and actual values. The findings suggest that ANN-based models offer good performance in river water quality prediction, with potential for further enhancement through additional variables or model architecture adjustments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Current Science Research and Review
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.