Abstract

BackgroundSensitivity analysis is an indispensable tool for the analysis of complex systems. In a recent paper, we have introduced a thermodynamically consistent variance-based sensitivity analysis approach for studying the robustness and fragility properties of biochemical reaction systems under uncertainty in the standard chemical potentials of the activated complexes of the reactions and the standard chemical potentials of the molecular species. In that approach, key sensitivity indices were estimated by Monte Carlo sampling, which is computationally very demanding and impractical for large biochemical reaction systems. Computationally efficient algorithms are needed to make variance-based sensitivity analysis applicable to realistic cellular networks, modeled by biochemical reaction systems that consist of a large number of reactions and molecular species.ResultsWe present four techniques, derivative approximation (DA), polynomial approximation (PA), Gauss-Hermite integration (GHI), and orthonormal Hermite approximation (OHA), for analytically approximating the variance-based sensitivity indices associated with a biochemical reaction system. By using a well-known model of the mitogen-activated protein kinase signaling cascade as a case study, we numerically compare the approximation quality of these techniques against traditional Monte Carlo sampling. Our results indicate that, although DA is computationally the most attractive technique, special care should be exercised when using it for sensitivity analysis, since it may only be accurate at low levels of uncertainty. On the other hand, PA, GHI, and OHA are computationally more demanding than DA but can work well at high levels of uncertainty. GHI results in a slightly better accuracy than PA, but it is more difficult to implement. OHA produces the most accurate approximation results and can be implemented in a straightforward manner. It turns out that the computational cost of the four approximation techniques considered in this paper is orders of magnitude smaller than traditional Monte Carlo estimation. Software, coded in MATLAB®, which implements all sensitivity analysis techniques discussed in this paper, is available free of charge.ConclusionsEstimating variance-based sensitivity indices of a large biochemical reaction system is a computationally challenging task that can only be addressed via approximations. Among the methods presented in this paper, a technique based on orthonormal Hermite polynomials seems to be an acceptable candidate for the job, producing very good approximation results for a wide range of uncertainty levels in a fraction of the time required by traditional Monte Carlo sampling.

Highlights

  • Sensitivity analysis is an indispensable tool for the analysis of complex systems

  • We have proposed in [16] a probabilistic sensitivity analysis approach for biochemical reaction systems that uses the standard chemical potentials of the activated complexes of the underlying reactions and molecular species as the biochemical factors of interest and propagates factor uncertainty to a given system response in a thermodynamically consistent manner

  • To reduce the computational burden of Monte Carlo estimation, it is imperative that we develop techniques which can produce sufficiently accurate estimates of the sensitivity indices in a fraction of the time required by Monte Carlo sampling

Read more

Summary

Introduction

Sensitivity analysis is an indispensable tool for the analysis of complex systems. In a recent paper, we have introduced a thermodynamically consistent variance-based sensitivity analysis approach for studying the robustness and fragility properties of biochemical reaction systems under uncertainty in the standard chemical potentials of the activated complexes of the reactions and the standard chemical potentials of the molecular species. Since biochemical reaction systems are subject to physical laws, an important requirement is that sensitivity analysis must satisfy important thermodynamic constraints, such as the principle of detailed balance [15] Bearing these in mind, we have proposed in [16] a probabilistic sensitivity analysis approach for biochemical reaction systems that uses the standard chemical potentials of the activated complexes of the underlying reactions and molecular species as the biochemical factors of interest and propagates factor uncertainty to a given system response in a thermodynamically consistent manner. Accurate estimation of the sensitivity indices requires a large number of Monte Carlo samples and, a large number of system response evaluations This makes Monte Carlo estimation of variance-based sensitivity indices computationally very expensive, especially in the case of biochemical reaction systems comprised of a large number of reactions and molecular species

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call