Abstract
Goodness of fit tests based on empirical processes have nonstandard limiting distributions when the null hypothesis is composite — that is, when parameters of the null model are estimated. Several solutions to this problem have been suggested, including the calculation of adjusted critical values for these nonstandard distributions and the transformation of the empirical process such that statistics based on the transformed process are asymptotically distribution-free. The approximation methods proposed by Durbin (1985) can be applied to compute appropriate critical values for tests based on supremum-norm statistics. The resulting tests have quite accurate size, a fact which has gone unrecognized in the econometrics literature. Some justification for this accuracy lies in the similar features that Durbin’s approximation methods share with the theory of extrema for Gaussian random fields and for Gauss-Markov processes. These adjustment techniques are also related to the transformation methodology proposed by Khmaladze (1981) through the score function of the parametric model. Simulation experiments suggest that these two testing strategies are roughly comparable to one another and more powerful than a simple bootstrap procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.