Abstract

In the past decade, there has been an increased interest in characterizing cardiac tissue mechanics utilizing newly developed ultrasound-based elastography techniques. These methods excite the tissue mechanically and track the response. Two frequently used methods, acoustic radiation force impulse (ARFI) and shear-wave elasticity imaging (SWEI), have been considered qualitative and quantitative techniques providing relative and absolute measures of tissue stiffness, respectively. Depending on imaging conditions, it is desirable to identify indices of cardiac function that could be measured by ARFI and SWEI and to characterize the relationship between the measures. In this study, we have compared two indices (i.e., relaxation time constant used for diastolic dysfunction assessment and systolic/diastolic stiffness ratio) measured nearly simultaneously by M-mode ARFI and SWEI techniques. We additionally correlated ARFI-measured inverse displacements with SWEI-measured values of the shear modulus of stiffness. For the eight animals studied, the average relaxation time constant ( τ) measured by ARFI and SWEI were ([Formula: see text]) and ([Formula: see text]), respectively ([Formula: see text]). Average systolic/diastolic stiffness ratios for ARFI and SWEI measurements were 6.01±1.37 and 7.12±3.24, respectively ([Formula: see text]). Shear modulus of stiffness (SWEI) was linearly related to inverse displacement values (ARFI) with a 95% CI for the slope of 0.010-0.011 [Formula: see text] ( R(2)=0.73). In conclusion, the relaxation time constant and the systolic/diastolic stiffness ratio were calculated with good agreement between the ARFI- and SWEI-derived measurements. ARFI relative and SWEI absolute stiffness measurements were linearly related with varying slopes based on imaging conditions and subject tissue properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.