Abstract

The Meteorological Service of Canada (MSC) has developed an operational snow water equivalent (SWE) retrieval algorithm suite for western Canada that can be applied to both Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) data. Separate algorithms derive SWE for open environments, deciduous, coniferous, and sparse forest cover. A final SWE value represents the area-weighted average based on the proportional land cover within each pixel. The combined SSM/I and SMMR time series of dual polarized, multichannel, spaceborne passive microwave brightness temperatures extends back to 1978, providing a lengthy time series for algorithm assessment. In this study, 5-day average (pentad) passive microwave-derived SWE imagery for 18 winter seasons (December, January, February 1978/79 through 1995/96) was compared to SWE estimates taken from a distributed network of surface measurements throughout western Canada. Results indicated both vegetative and snowpack controls on the performance of MSC algorithms. In regions of open and low-density forest cover, the in situ and passive microwave SWE data exhibited both strong agreement and similar levels of interannual variability. In locations where winter season SWE typically exceeded 75 mm, and/or dense vegetative cover was present, dataset agreement weakened appreciably, with little interannual variability in the passive microwave SWE retrievals. These results have important implications for extending the SWE monitoring capability of the MSC algorithm suite to northern regions such as the Mackenzie River basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call