Abstract

We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.