Abstract
BackgroundThe automatic segmentation of kidneys in medical images is not a trivial task when the subjects undergoing the medical examination are affected by Autosomal Dominant Polycystic Kidney Disease (ADPKD). Several works dealing with the segmentation of Computed Tomography images from pathological subjects were proposed, showing high invasiveness of the examination or requiring interaction by the user for performing the segmentation of the images. In this work, we propose a fully-automated approach for the segmentation of Magnetic Resonance images, both reducing the invasiveness of the acquisition device and not requiring any interaction by the users for the segmentation of the images.MethodsTwo different approaches are proposed based on Deep Learning architectures using Convolutional Neural Networks (CNN) for the semantic segmentation of images, without needing to extract any hand-crafted features. In details, the first approach performs the automatic segmentation of images without any procedure for pre-processing the input. Conversely, the second approach performs a two-steps classification strategy: a first CNN automatically detects Regions Of Interest (ROIs); a subsequent classifier performs the semantic segmentation on the ROIs previously extracted.ResultsResults show that even though the detection of ROIs shows an overall high number of false positives, the subsequent semantic segmentation on the extracted ROIs allows achieving high performance in terms of mean Accuracy. However, the segmentation of the entire images input to the network remains the most accurate and reliable approach showing better performance than the previous approach.ConclusionThe obtained results show that both the investigated approaches are reliable for the semantic segmentation of polycystic kidneys since both the strategies reach an Accuracy higher than 85%. Also, both the investigated methodologies show performances comparable and consistent with other approaches found in literature working on images from different sources, reducing both the invasiveness of the analyses and the interaction needed by the users for performing the segmentation task.
Highlights
The automatic segmentation of kidneys in medical images is not a trivial task when the subjects undergoing the medical examination are affected by Autosomal Dominant Polycystic Kidney Disease (ADPKD)
Starting from a preliminary work performed on a small set of patients [25], we present two different approaches based on Deep Learning (DL) architectures to perform the automatic segmentation of kidneys affected by ADPKD
Regions with convolutional neural networks Due to the presence of cysts in the organs near the kidneys and very similar structures located near the area of interest, which may affect the segmentation performance, we investigated a second approach based on the object detection strategy using R-Convolutional Neural Networks (CNN)
Summary
The automatic segmentation of kidneys in medical images is not a trivial task when the subjects undergoing the medical examination are affected by Autosomal Dominant Polycystic Kidney Disease (ADPKD). Several works dealing with the segmentation of Computed Tomography images from pathological subjects were proposed, showing high invasiveness of the examination or requiring interaction by the user for performing the segmentation of the images. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a hereditary disease characterised by the onset of renal cysts that lead to a progressive increase of the Total Kidney Volume (TKV) over time. The ADPKD type I, which is caused by the PKD1 gene mutation, involves the 85 - 90% of the cases, usually affecting people older than 30 years. The mutation of the PKD2 gene, instead, leads to ADPKD type II (affecting the 10 - 15% of the cases), which mostly regards children developing cysts already when in the maternal uterus and die within a year. The size of cysts is extremely variable, ranging from some millimetres to 4 - 5 centimetres [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.