Abstract

By using a new Hamiltonian of interaction we have calculated the interaction energy for two-dimensional and three-dimensional lattices. We present also, approximate analytical formulae and the analytical formulae for the constant of the elastic force. The obtained results show that in the three-dimensional space, the two-dimensional lattice has the lattice constant and the cohesive energy which are smaller than that of the three-dimensional lattice. For appropriate values of the coupling constants, the two-dimensional lattice in a two-dimensional space has both the lattice constant and the cohesive energy, larger than that of the two-dimensional lattice in a three-dimensional space; this means that if there is a two-dimensional space in the Universe, this should be thinner than the three-dimensional space, while the interaction forces should be stronger. On the other hand, if the coupling constant in the two-dimensional lattice in the two-dimensional space is close to zero, the cohesive energy should be comparable with the cohesive energy from three-dimensional space but this two-dimensional space does not emit but absorbs radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.