Abstract

Biofilms based on waxy maize and cassava starches (cereal and tuber starch, respectively), plasticized with glycerol were characterized through their crystallinity, dynamic-mechanical behavior (DMA), thermal degradation (TGA), moisture content and water vapor permeability (WVP). X-ray diffraction experiments show that both materials were mainly amorphous, with the waxy starch presenting a discreetly A-type X-ray pattern. Microscopic investigation of the cryo-fractured surfaces supported this observation. The glass transition of the glycerol-rich phase (measured by DMA) occurs at higher temperatures for cassava than for waxy maize starch, suggesting that the dispersion level of glycerol is higher in the former. TGA showed that maize starch has a slightly higher thermal stability than cassava starch, while glycerol interacts more strongly with the last one. The WVP was 18% higher in the case of the cassava starch film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.