Abstract

Among the wide range of third-generation photovoltaic power generation technologies, there is a widely used type of photovoltaic - heterojunction photovoltaic cells. Although each of the different types of heterojunction photovoltaics has been studied in depth, no one has considered the direct application of the different types of heterojunction photovoltaics at the application level. This paper introduces the composition and advantages of heterojunction photovoltaic cells, and briefly introduces graphene/n-type amorphous silicon heterojunction photovoltaic, organic compound/inorganic heterojunction photovoltaic, and inorganic/inorganic heterojunction photovoltaic represented by CuO and Zn2O, and summarizes the different photovoltaic conversion efficiencies, preparation methods, and other key information of these cells, and compares these information. In particular, whether the photovoltaic conversion efficiency can reach the shockley-queisser limit is examined. Among them, the photoconversion efficiency of graphene/n-type amorphous silicon heterojunction and simple metal oxide heterojunction was not very satisfactory, and finally the heterojunction PV cell constructed by the byorganic cavity-conducting material led by Graezel et al. was chosen among the different research directions of organic/inorganic heterojunction PV cells. Cavity-conducting material combined with a titanium dioxide nanofilm with adsorbed dye as a relatively ideal heterojunction PV cell for comparison was examined in this paper, which provides a proposal for the commercial development of new heterojunction PV cells in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call