Abstract
Zinc oxide nanoparticles (ZnO-NPs) are among the most commonly used nano-fertilizers (NF). However, elevated levels of ZnO-NPs in soil may affect plant growth and development due to its potential toxicity when accumulated in large amounts in plant tissues. This research was conducted using an in situ rhizobox system with the aims of evaluating zinc uptake from nano-zinc oxide amended rhizosphere soil by alfalfa plant and the effect of plant growth-promoting microorganisms on alleviating the phytotoxicity of ZnO-NPs. Treatments included microbial inoculations (Sinorhizobium meliloti, Serendipita indica) and different ZnO-NP concentrations (0, 400, and 800 mg kg-1) with three replications. The results indicated that S. indica minimized the phytotoxicity of ZnO-NPs to alfalfa by enhancing growth rate and decreasing zinc (Zn) translocation from root to shoot. Compared with plants inoculated with S. meliloti, co-inoculation with S. indica increased the shoot dry weight by 18.33% and 8.05% at 400 and 800 mg kg-1 ZnO-NPs, respectively. However, at the highest level of ZnO-NPs (800 mg kg-1), root inoculation of S. indica and S. indica + S. meliloti decreased Zn translocation factor by 60.2% and 44.3% compared to S. meliloti, respectively. Furthermore, a distinct relation between tolerance of S. indica-colonized plant to ZnO-NPs and the ability of S. indica in inhibiting or retarding degradation of polyunsaturated lipids through prevention of excess reactive oxygen species formation was observed. Malondialdehyde content of inoculated plants with S. indica either alone or in combination with S. meliloti was significantly lower than non-inoculated plants (p< 0.01). Zn-induced oxidative stress was mitigated by S. indica through enhanced activities of catalase and peroxidase enzymes. The findings of the present study indicate the potential use of endophytes fungus S. indica for ensuring food safety and security, and human health in heavy metal-polluted soil by reducing the phytoavailability of heavy metals in the aerial parts of the host plants.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.