Abstract

BackgroundCurrent 2010 terrestrial (1Gz) CPR guidelines have been advocated by space agencies for hypogravity and microgravity environments, but may not be feasible. The aims of this study were to (1) evaluate rescuer performance over 1.5 min of external chest compressions (ECCs) during simulated Martian hypogravity (0.38Gz) and microgravity (μG) in relation to 1Gz and rest baseline and (2) compare the physiological costs of conducting ECCs in accordance with the 2010 and 2005 CPR guidelines.MethodsThirty healthy male volunteers, ranging from 17 to 30 years, performed four sets of 30 ECCs for 1.5 min using the 2010 and 2005 ECC guidelines during 1Gz, 0.38Gz and μG simulations (Evetts-Russomano (ER) method), achieved by the use of a body suspension device. ECC depth and rate, range of elbow flexion, post-ECC heart rate (HR), minute ventilation (VE), peak oxygen consumption (VO2peak) and rate of perceived exertion (RPE) were measured.ResultsAll volunteers completed the study. Mean ECC rate was achieved for all gravitational conditions, but true depth during simulated microgravity was not sufficient for the 2005 (28.5 ± 7.0 mm) and 2010 (32.9 ± 8.7 mm) guidelines, even with a mean range of elbow flexion of 15°. HR, VE and VO2peak increased to an average of 136 ± 22 bpm, 37.5 ± 10.3 L·min−1, 20.5 ± 7.6 mL·kg−1·min−1 for 0.38Gz and 161 ± 19 bpm, 58.1 ± 15.0 L·min−1, 24.1 ± 5.6 mL·kg−1·min−1 for μG from a baseline of 84 ± 15 bpm, 11.4 ± 5.9 L·min−1, 3.2 ± 1.1 mL·kg−1·min-1, respectively. RPE was the only variable to increase with the 2010 guidelines.ConclusionNo additional physiological cost using the 2010 basic life support (BLS) guidelines was needed for healthy males performing ECCs for 1.5 min, independent of gravitational environment. This cost, however, increased for each condition tested when the two guidelines were compared. Effective ECCs were not achievable for both guidelines in simulated μG using the ER BLS method. This suggests that future implementation of an ER BLS in a simulated μG instruction programme as well as upper arm strength training is required to perform effective BLS in space.

Highlights

  • Current 2010 terrestrial (1Gz) cardiopulmonary resuscitation (CPR) guidelines have been advocated by space agencies for hypogravity and microgravity environments, but may not be feasible

  • Eleven volunteers were able to adhere to the 2010 External chest compression (ECC) guidelines in simulated μG, and the mean Maximum depth (DMax) fell short of the 50-mm effective limit (44.9 (±10.9) mm)

  • Guidelines for all three gravitational conditions studied, the performance of ECCs during hypogravity and microgravity simulations depicted an increase in physiological cost compared to terrestrial basic life support (BLS)

Read more

Summary

Introduction

Current 2010 terrestrial (1Gz) CPR guidelines have been advocated by space agencies for hypogravity and microgravity environments, but may not be feasible. Human exploration of space is curtailed by the physiological and technical impact of reduced gravity. It has provoked a fascination in mankind as limitless as the void of space itself. Reduced-gravity environments cause the cardiovascular system to undergo adaptive functional and structural changes. Microgravity induces a reduction in hydrostatic pressure, causing a cephalic redistribution of blood and body fluids. This headward shift is responsible for the ‘puffy-face & bird-leg’ appearance of astronauts in space. The cardiovascular system adapts to microgravity by reducing blood volume by approximately 20%, which is in part responsible for the orthostatic intolerance commonly found post-spaceflight. With space agencies shifting their emphasis to lunar return missions and the eventual human exploration of Mars, the likelihood for cardiovascular issues to manifest themselves will be further enhanced with increasing space mission length

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call