Abstract

To directly compare stem cells from the normal adult human brain (adult human neural stem cells [AHNSC]), Grade II astrocytomas (AC II), and glioblastoma multiforme (GBM), with respect to proliferative and tumor-forming capacity and differentiation potential. Cells were isolated from tissue obtained during epilepsy surgery (AHNSCs) or tumor surgery (glioma stem cells [GSC]). They were cultured and investigated in vitro or after transplantation in immunodeficient mice. Under identical experimental conditions, the following were found: 1) GBM stem cells formed tumors after orthotopic transplantation; AHNSCs showed no sign of tumor formation; 2) GSCs showed a significantly higher growth rate and self-renewal capacity; 3) both the growth rate and telomerase expression were high in GSCs and correlated with malignancy grade (GBM higher than AC II); AHNSCs had low telomerase expression; 4) GSCs invaded normal neurospheres, not vice versa; 5) both AHNSCs and stem cells from AC II and GBM responded to differentiation cues with a dramatic decrease in the proliferation index (Ki-67); 6) GSCs differentiated faster than AHNSCs; 7) upon differentiation, AHNSCs produced normal glia and neurons; GSCs produced morphologically aberrant cells often expressing both glial and neuronal antigens; and 8) differentiation of AHNSCs resulted in 2 typical functional phenotypes: neurons (high electrical membrane resistance, ability to generate action potentials) and glial cells (low membrane resistance, no action potentials). In contrast, GSCs resulted in only 1 functional phenotype: cells with high electrical resistance and active membrane properties capable of generating action potentials. AHNSCs and stem cells from AC II and GBM differ with respect to proliferation, tumor-forming capacity, and rate and pattern of differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.