Abstract

This work employs a LQR (Linear Quadratic Regulator) predictive control as well as a LQR controller to control the angular servomotor positions of a planar robot of 2DOF (2 Degrees of Freedom). The goal of such a pantograph type robot is to manipulate the X-Y positions of a 4-bar linkage end effector using two rotary servo base units connected to two revolute joints. Three unactuated revolute joints complete the five links of the robot. Experimental results demonstrate that the LQR predictive controller performs better than the LQR controller, because the former controller is able to diminish the steady-state error between the Cartesian coordinates with respect to the desired coordinates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.