Abstract

We compared the ability of full waveform inversion to recover background velocity models from data containing no low-frequency information using the frequency and Laplace domains. Low-frequency information is crucial for recovering background velocity when using frequency-domain waveform inversions. However, the dearth of low-frequency information in field data makes frequency-domain inversion impractical without accurate starting velocity models. Instead, by performing waveform inversion in the Laplace domain, one can recover a smooth velocity model that can be used for either migration or for subsequent frequency-domain inversion as an accurate initial velocity model. The Laplace-transformed wavefield can be thought of as the zero-frequency component of a damped wavefield over a range of damping constants. In this paper, we compare results obtained from both frequency- and Laplace-domain inversions and confirm that the Laplace-domain inversion can be used to recover background velocity from real data without low-frequency information. We also demonstrate that the Laplace-domain inversion can provide the frequency-domain inversion with smooth initial velocity models for better inversion results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.