Abstract

This paper deals with the detection of flooding attacks which are the most common type of Denial of Service (DoS) attacks. We compare 2 divergence measures (Hellinger distance and Chi-square divergence) to analyze their detection accuracy. The performance of these statistical divergence measures are investigated in terms of true positive and false alarm ratio. A particular focus will be on how to use these measures over Sketch data structure, and which measure provides the best detection accuracy. We conduct performance analysis over publicly available real IP traces (MAWI) collected from the WIDE backbone network. Our experimental results show that Chi-square divergence outperforms Hellinger distance in network anomalies detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.