Abstract
Accurate software effort estimation has been a challenge for many software practitioners and project managers. Underestimation leads to disruption in the projects estimated cost and delivery. On the other hand, overestimation causes outbidding and financial losses in business. Many software estimation models exist; however, none have been proven to be the best in all situations. In this paper, a decision tree forest (DTF) model is compared to a traditional decision tree (DT) model, as well as a multiple linear regression model (MLR). The evaluation was conducted using ISBSG and Desharnais industrial datasets. Results show that the DTF model is competitive and can be used as an alternative in software effort prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.