Abstract

In this study, first a 3-D thermal model is developed for an open top, vertical direct chill (DC) casting process of rolling slabs (ingots) by taking into account the casting speed in the form of slag flow in the thermal connective-diffusion equation. The mushy region solidification characteristics of the process are accounted for through the implementation of the enthalpy porosity technique. The thermal model is later extended to a 3-D CFD model to account for the coupled turbulent heat transfer and solidification aspect of the process. Both models simulate an industrial-sized, hot-top type vertical Direct Chill (DC) slab caster for high strength aluminum alloy AA-7050. A staggered control volume based finite-difference scheme is used to solve the modeled equations and the associated boundary conditions. In the CFD model, the turbulent aspects of flow and solidification heat transfer are modeled using a low Reynolds number version of the k–ε eddy viscosity approach. Computed results for the steady-state phase of the casting process are presented for four casting speeds varying from 60 to 180 mm/min for a fixed inlet melt superheat of 32°C. Simulation results of the velocity and temperature fields and heat fluxes along the caster surface are presented for the CFD model and the shell thickness and sump depth are compared between the CFD and thermal models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call