Abstract

The study focused on the ability to predict the need and size of femoral and tibial augmentation using standard two-dimensional (2D) templates and models created with three-dimensional (3D) printing in surgical planning. This observational cohort study included 28 consecutive patients (22 females, 6 males; mean age: 71±7.3 years; range, 54 to 82 years) with periprosthetic joint infection recruited between March 2021 and September 2023 undergoing revision total knee arthroplasty revision (TKA). Standard planning was made using calibrated X-ray images. The 3D planning started with computed tomography scans to generate a 3D template of the distal femur and proximal tibia. The model was exported to a 3D printer to produce a patient-specific phantom. The surgery was then simulated on the 3D phantom using revision knee arthroplasty instrumentation to evaluate the appropriate augmentation to use until a correct alignment was obtained. Three-dimensional planning predicted the need for femoral and tibial augments in 22 (78.6%) cases at both the tibial and femoral components, while 2D planning correctly predicted the need for augmentation in 17 (60.7%) for the tibial side and 18 (64.3%) for the femoral side. The Cohen's kappa demonstrated a significant agreement between the 3D planning for the femoral metal block and the intraoperative requirement (kappa=0.553), whereas 2D planning showed only nonsignificant poor agreement (kappa=0.083). In contrast, the agreement between 2D or 3D preoperative planning for tibial augment and the intraoperative requirement was nonsignificant (kappa=0.130 and kappa=0.158, respectively). On the femoral side, 2D planning showed only a fair nonsignificant correlation (r=0.35, p=0.069), whereas 3D planning exhibited substantial agreement with the actual thickness of the implanted augment (r=0.65, p<0.001). On the tibial side, 3D and 2D planning showed substantial agreement with the actual size of implanted augments (3D planning, r=0.73, p<0.001; 2D planning, r=0.69, p<0.001). Prediction based on 3D computed tomography segmentation showed significant agreement with the intraoperative need for augmentations in revision TKA. The results suggest that planning with 3D printed models represents a stronger aid in this kind of surgery rather than standard 2D planning, providing greater accuracy in the prediction of the required augmentation in revision TKA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.