Abstract

The concept of resonant (or Clar) pattern is extended to a plane non-bipartite graph G in this paper: a set of disjoint interior faces of G is called a resonant pattern if such face boundaries are all M-conjugated cycles for some 1-factor (Kekule structure or perfect matching) M of G. In particular, a resonant pattern of benzenoids and fullerenes coincides with a sextet pattern. By applying a novel approach, the principle of inclusion and exclusion in combinatorics, we show that for any plane graphs, 1-factor count is not less than the resonant pattern count, which generalize the corresponding results in benzenoid systems and plane bipartite graphs. Applications to fullerenes are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.