Abstract
The high oxidation power of the photogenerated hole in TiO2 has made it useful in many applications. It is of fundamental importance to understand how the hole transfers from the catalysis to adsorbates. We have performed a comparative study on the mechanism for the first proton-coupled hole transfer process in water, methanol, formic acid, and formaldehyde on the anatase TiO2(101) surface. Our results show that this process for all the molecules is concerted rather than sequential. Both the kinetic and thermodynamic effects need to be taken into account. The hole scavenging power for the four molecules under investigation is found to follow the order formaldehyde > formic acid > methanol > water, which agrees well with various experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.